skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mishra, Umakant"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Soil carbon (C) responses to environmental change represent a major source of uncertainty in the global C cycle. Feedbacks between soil C stocks and climate drivers could impact atmospheric CO2levels, further altering the climate. Here, we assessed the reliability of Earth system model (ESM) predictions of soil C change using the Coupled Model Intercomparison Project phases 5 and 6 (CMIP5 and CMIP6). ESMs predicted global soil C gains under the high emission scenario, with soils taking up 43.9 Pg (95% CI: 9.2–78.5 Pg) C on average during the 21st century. The variation in global soil C change declined significantly from CMIP5 (with average of 48.4 Pg [95% CI: 2.0–94.9 Pg] C) to CMIP6 models (with average of 39.3 Pg [95% CI: 23.9–54.7 Pg] C). For some models, a small C increase in all biomes contributed to this convergence. For other models, offsetting responses between cold and warm biomes contributed to convergence. Although soil C predictions appeared to converge in CMIP6, the dominant processes driving soil C change at global or biome scales differed among models and in many cases between earlier and later versions of the same model. Random Forest models, for soil carbon dynamics, accounted for more than 63% variation of the global soil C change predicted by CMIP5 ESMs, but only 36% for CMIP6 models. Although most CMIP6 models apparently agree on increased soil C storage during the 21st century, this consensus obscures substantial model disagreement on the mechanisms underlying soil C response, calling into question the reliability of model predictions. 
    more » « less
  2. Current biogeochemical models produce carbon–climate feedback projections with large uncertainties, often attributed to their structural differences when simulating soil organic carbon (SOC) dynamics worldwide. However, choices of model parameter values that quantify the strength and represent properties of different soil carbon cycle processes could also contribute to model simulation uncertainties. Here, we demonstrate the critical role of using common observational data in reducing model uncertainty in estimates of global SOC storage. Two structurally different models featuring distinctive carbon pools, decomposition kinetics, and carbon transfer pathways simulate opposite global SOC distributions with their customary parameter values yet converge to similar results after being informed by the same global SOC database using a data assimilation approach. The converged spatial SOC simulations result from similar simulations in key model components such as carbon transfer efficiency, baseline decomposition rate, and environmental effects on carbon fluxes by these two models after data assimilation. Moreover, data assimilation results suggest equally effective simulations of SOC using models following either first‐order or Michaelis–Menten kinetics at the global scale. Nevertheless, a wider range of data with high‐quality control and assurance are needed to further constrain SOC dynamics simulations and reduce unconstrained parameters. New sets of data, such as microbial genomics‐function relationships, may also suggest novel structures to account for in future model development. Overall, our results highlight the importance of observational data in informing model development and constraining model predictions. 
    more » « less
  3. {"Abstract":["Data Description<\/strong>:<\/p>\n\nTo improve SOC estimation in the United States, we upscaled site-based SOC measurements to the continental scale using multivariate geographic clustering (MGC) approach coupled with machine learning models. First, we used the MGC approach to segment the United States at 30 arc second resolution based on principal component information from environmental covariates (gNATSGO soil properties, WorldClim bioclimatic variables, MODIS biological variables, and physiographic variables) to 20 SOC regions. We then trained separate random forest model ensembles for each of the SOC regions identified using environmental covariates and soil profile measurements from the International Soil Carbon Network (ISCN) and an Alaska soil profile data. We estimated United States SOC for 0-30 cm and 0-100 cm depths were 52.6 + 3.2 and 108.3 + 8.2 Pg C, respectively.<\/p>\n\nFiles in collection (32):<\/p>\n\nCollection contains 22 soil properties geospatial rasters, 4 soil SOC geospatial rasters, 2 ISCN site SOC observations csv files, and 4 R scripts<\/p>\n\ngNATSGO TIF files:<\/p>\n\n├── available_water_storage_30arc_30cm_us.tif                   [30 cm depth soil available water storage]\n├── available_water_storage_30arc_100cm_us.tif                 [100 cm depth soil available water storage]\n├── caco3_30arc_30cm_us.tif                                                 [30 cm depth soil CaCO3 content]\n├── caco3_30arc_100cm_us.tif                                               [100 cm depth soil CaCO3 content]\n├── cec_30arc_30cm_us.tif                                                     [30 cm depth soil cation exchange capacity]\n├── cec_30arc_100cm_us.tif                                                   [100 cm depth soil cation exchange capacity]\n├── clay_30arc_30cm_us.tif                                                     [30 cm depth soil clay content]\n├── clay_30arc_100cm_us.tif                                                   [100 cm depth soil clay content]\n├── depthWT_30arc_us.tif                                                        [depth to water table]\n├── kfactor_30arc_30cm_us.tif                                                 [30 cm depth soil erosion factor]\n├── kfactor_30arc_100cm_us.tif                                               [100 cm depth soil erosion factor]\n├── ph_30arc_100cm_us.tif                                                      [100 cm depth soil pH]\n├── ph_30arc_100cm_us.tif                                                      [30 cm depth soil pH]\n├── pondingFre_30arc_us.tif                                                     [ponding frequency]\n├── sand_30arc_30cm_us.tif                                                    [30 cm depth soil sand content]\n├── sand_30arc_100cm_us.tif                                                  [100 cm depth soil sand content]\n├── silt_30arc_30cm_us.tif                                                        [30 cm depth soil silt content]\n├── silt_30arc_100cm_us.tif                                                      [100 cm depth soil silt content]\n├── water_content_30arc_30cm_us.tif                                      [30 cm depth soil water content]\n└── water_content_30arc_100cm_us.tif                                   [100 cm depth soil water content]<\/p>\n\nSOC TIF files:<\/p>\n\n├──30cm SOC mean.tif                             [30 cm depth soil SOC]\n├──100cm SOC mean.tif                           [100 cm depth soil SOC]\n├──30cm SOC CV.tif                                 [30 cm depth soil SOC coefficient of variation]\n└──100cm SOC CV.tif                              [100 cm depth soil SOC coefficient of variation]<\/p>\n\nsite observations csv files:<\/p>\n\nISCN_rmNRCS_addNCSS_30cm.csv       30cm ISCN sites SOC replaced NRCS sites with NCSS centroid removed data<\/p>\n\nISCN_rmNRCS_addNCSS_100cm.csv       100cm ISCN sites SOC replaced NRCS sites with NCSS centroid removed data<\/p>\n\n\nData format<\/strong>:<\/p>\n\nGeospatial files are provided in Geotiff format in Lat/Lon WGS84 EPSG: 4326 projection at 30 arc second resolution.<\/p>\n\nGeospatial projection<\/strong>: <\/p>\n\nGEOGCS["GCS_WGS_1984",\n DATUM["D_WGS_1984",\n SPHEROID["WGS_1984",6378137,298.257223563]],\n PRIMEM["Greenwich",0],\n UNIT["Degree",0.017453292519943295]]\n(base) [jbk@theseus ltar_regionalization]$ g.proj -w\nGEOGCS["wgs84",\n DATUM["WGS_1984",\n SPHEROID["WGS_1984",6378137,298.257223563]],\n PRIMEM["Greenwich",0],\n UNIT["degree",0.0174532925199433]]\n<\/code>\n\n <\/p>"]} 
    more » « less
  4. Peatlands cover 3% of the global land surface, yet store 25% of the world’s soil organic carbon. These organic-rich soils are widespread across permafrost regions, representing nearly 18% of land surface and storing between 500 and 600 petagrams of carbon (PgC). Peat (i.e., partially decomposed thick organic layers) accumulates due to the imbalance between plant production and decomposition often within saturated, nutrient deficient, and acidic soils, which limit decomposition. As warmer and drier conditions become more prevalent across northern ecosystems, the vulnerability of peatland soils may increase with the susceptibility of peat-fire ignitions, yet the distribution of peatlands across Alaska remains uncertain. Here we develop a new high-resolution (20 meter (m) resolution) wall-to-wall ~1.5 million square kilometer (km2) peatland map of Alaska, using a combination of Sentinel-1 (Dual-polarized Synthetic Aperture Radar), Sentinel-2 (Multi-Spectral Imager), and derivatives from the Arctic Digital Elevation Model (ArcticDEM). Machine learning classifiers were trained and tested using peat cores, ground observations, and sub-meter resolution image interpretation, which was spatially constrained by a peatland suitability model that described the extent of terrain suitable for peat accumulation. This product identifies peatlands in Polar, Boreal, and Maritime ecoregions in Alaska to cover 26,842 (4.6%), 69,783 (10.4%), and 13,506 (5.3%) km2, respectively. 
    more » « less
  5. Abstract Estimates of soil organic carbon (SOC) stocks are essential for many environmental applications. However, significant inconsistencies exist in SOC stock estimates for the U.S. across current SOC maps. We propose a framework that combines unsupervised multivariate geographic clustering (MGC) and supervised Random Forests regression, improving SOC maps by capturing heterogeneous relationships with SOC drivers. We first used MGC to divide the U.S. into 20 SOC regions based on the similarity of covariates (soil biogeochemical, bioclimatic, biological, and physiographic variables). Subsequently, separate Random Forests models were trained for each SOC region, utilizing environmental covariates and SOC observations. Our estimated SOC stocks for the U.S. (52.6 ± 3.2 Pg for 0–30 cm and 108.3 ± 8.2 Pg for 0–100 cm depth) were within the range estimated by existing products like Harmonized World Soil Database, HWSD (46.7 Pg for 0–30 cm and 90.7 Pg for 0–100 cm depth) and SoilGrids 2.0 (45.7 Pg for 0–30 cm and 133.0 Pg for 0–100 cm depth). However, independent validation with soil profile data from the National Ecological Observatory Network showed that our approach (R2 = 0.51) outperformed the estimates obtained from Harmonized World Soil Database (R2 = 0.23) and SoilGrids 2.0 (R2 = 0.39) for the topsoil (0–30 cm). Uncertainty analysis (e.g., low representativeness and high coefficients of variation) identified regions requiring more measurements, such as Alaska and the deserts of the U.S. Southwest. Our approach effectively captures the heterogeneous relationships between widely available predictors and the current SOC baseline across regions, offering reliable SOC estimates at 1 km resolution for benchmarking Earth system models. 
    more » « less
  6. Abstract Soils store more carbon than other terrestrial ecosystems 1,2 . How soil organic carbon (SOC) forms and persists remains uncertain 1,3 , which makes it challenging to understand how it will respond to climatic change 3,4 . It has been suggested that soil microorganisms play an important role in SOC formation, preservation and loss 5–7 . Although microorganisms affect the accumulation and loss of soil organic matter through many pathways 4,6,8–11 , microbial carbon use efficiency (CUE) is an integrative metric that can capture the balance of these processes 12,13 . Although CUE has the potential to act as a predictor of variation in SOC storage, the role of CUE in SOC persistence remains unresolved 7,14,15 . Here we examine the relationship between CUE and the preservation of SOC, and interactions with climate, vegetation and edaphic properties, using a combination of global-scale datasets, a microbial-process explicit model, data assimilation, deep learning and meta-analysis. We find that CUE is at least four times as important as other evaluated factors, such as carbon input, decomposition or vertical transport, in determining SOC storage and its spatial variation across the globe. In addition, CUE shows a positive correlation with SOC content. Our findings point to microbial CUE as a major determinant of global SOC storage. Understanding the microbial processes underlying CUE and their environmental dependence may help the prediction of SOC feedback to a changing climate. 
    more » « less
  7. null (Ed.)
    Large stocks of soil organic carbon (SOC) have accumulated in the Northern Hemisphere permafrost region, but their current amounts and future fate remain uncertain. By analyzing dataset combining >2700 soil profiles with environmental variables in a geospatial framework, we generated spatially explicit estimates of permafrost-region SOC stocks, quantified spatial heterogeneity, and identified key environmental predictors. We estimated that 1014 − 175 + 194 Pg C are stored in the top 3 m of permafrost region soils. The greatest uncertainties occurred in circumpolar toe-slope positions and in flat areas of the Tibetan region. We found that soil wetness index and elevation are the dominant topographic controllers and surface air temperature (circumpolar region) and precipitation (Tibetan region) are significant climatic controllers of SOC stocks. Our results provide first high-resolution geospatial assessment of permafrost region SOC stocks and their relationships with environmental factors, which are crucial for modeling the response of permafrost affected soils to changing climate. 
    more » « less